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1. Introduction

In this paper, we study the geometry of quaternionic-Kähler manifolds M obtained by

the c-map construction of [1, 2] from a projective special Kähler manifold Ms. While our

results may be of independent mathematical interest, our motivation stems from the physics

of BPS black holes in N = 2,D = 4 supergravity, as we now explain. The mathematically

oriented or impatient reader is kindly urged to proceed to section 1.2.

– 1 –



J
H
E
P
0
4
(
2
0
0
7
)
0
3
8

1.1 Motivation

Supersymmetric black holes in Type II string theory compactified on a Calabi-Yau three-

fold X offer a rich playground to test the stringy description of black-hole micro-states

beyond leading order: on the macroscopic side, thanks to an off-shell superspace description

of vector multiplets, an infinite series of higher-derivative curvature corrections can be

computed using the topological string on X [3, 4]; on the microscopic side, the weakly

coupled D-brane [5, 6] or M5-brane [7] description can be extended to strong coupling,

thanks to the tree-level decoupling between vector multiplets and hypermultiplets. The

interplay between these two descriptions has culminated in a recent conjecture [8] relating

the microscopic degeneracies, to all orders in an expansion in the inverse of the graviphoton

charge, to the topological string amplitude (see e.g. [9] for a recent review and further

references).

Due to the aforementioned decoupling between vector multiplets and hypermultiplets,

the study of BPS black holes in N = 2 supergravity is usually framed in the language

of special geometry. It has however become increasingly clear that quaternionic-Kähler

geometry may be a more useful framework. Indeed, the attractor equations that govern

the radial evolution of the complex vector multiplet scalars in the black hole geometry

are equivalent to “supersymmetric” geodesic motion on a para-quaternionic-Kähler man-

ifold M∗, of dimension 4n (where n − 1 is the number of vector multiplets) and split

signature [10]. This M∗ is a particular analytic continuation (studied in [10, 11]) of the

(positive signature) quaternionic-Kähler manifold M, obtained via the c-map construction

of [1, 2] from the projective special Kähler manifold Ms describing the vector multiplet

scalars in four dimensions. This description of the attractor equations follows from the

fact that stationary black holes in four dimensions can be reduced to three dimensions

along their timelike isometry, where they become solutions of three-dimensional Euclidean

gravity coupled to a non-linear sigma model on M∗. Further assuming spherical symmetry

leads to geodesic motion on M∗ [12]; the electric, magnetic and NUT charges of the black

hole are identified as conserved Noether charges for a Heisenberg algebra of isometries of

M∗. This equivalence between black hole attractor equations and geodesic motion on a

quaternionic-Kähler manifold can also be seen as a consequence of T-duality along the time

direction, which relates black holes to D-instantons, with a non-trivial radial dependence

of the hypermultiplets in the dual four-dimensional theory [13 – 15].

This reformulation is particularly well suited to the radial quantization of BPS black

holes, which, according to the proposal in [16], should provide a holographic point of view

on the conjecture of [8]. Indeed, once the radial evolution equations are reformulated as

geodesic motion, quantization could proceed as usual by replacing functions on the classical

phase space T ∗(M∗), of real dimension 8n, by (square integrable) wave functions on M,

satisfying the appropriate Wheeler-De Witt type constraint [10]. The corresponding Hilbert

space is infinite dimensional, even after restricting to the subspace with fixed electric and

magnetic charges.

More relevant however is the quantization of supersymmetric geodesic motion, corre-

sponding to BPS black holes: the analysis in [17] (as announced in [10, 9]) shows that after
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imposing the BPS constraints the classical phase space becomes the twistor space Z of

M, with real dimension 4n + 2, almost twice as small as the non-BPS phase space. The

twistor space is a standard construct in quaternionic geometry [18], which carries a Kähler-

Einstein metric and a canonical integrable complex structure, unlike the base M whose

quaternionic structure has a non-vanishing Nijenhuis tensor. It is fibered by 2-spheres over

M; physically, the coordinate in the fiber keeps track of the projectivized Killing spinor

preserved by the black hole [17]. In fact, it is convenient to integrate the entire quaternionic

structure on M by introducing an R
4/Z2 bundle S over the quaternionic-Kähler space M,

known as the the “hyperkähler cone” or “Swann space” [19]; the twistor space Z then arises

as a Kähler quotient S//U(1). This construction is particularly natural in the conformal

approach to supergravity [20], and leads to a simple description of the supersymmetric

geodesics in terms of holomorphic maps from C to S [17].

Having identified the twistor space Z as the BPS phase space, quantization proceeds

in the usual way for Kähler manifolds, i.e. by replacing functions on Z with classes in the

cohomology of an appropriate line bundle over Z. In more mundane terms, the BPS Hilbert

space consists of holomorphic functions in 2n + 1 variables. In stark contrast to the non-

BPS case, the BPS wave function is now uniquely specified by the electric and magnetic

charges of the black hole, as a coherent eigenstate of the Heisenberg symmetries [17]. It

can be pushed down to a wave function on the base space M, annihilated by the quantum

BPS constraints, by contour integration along the CP
1 fiber (a quaternionic generalization

of the Penrose transform, described in [21, 22].)

While the above statements hold on very general grounds, for practical purposes it is

important to have a direct handle on the geometry of the twistor space Z and the Swann

space S. In particular, it is necessary to know the Kähler potential on Z explicitly, since it

controls the inner product on the BPS Hilbert space. To compute the Penrose transform

of the BPS wave function on Z, one also needs to express the complex coordinates on Z
and S in terms of the real coordinates on M arising from the c-map and the complex

coordinates on the fibers. This lays the groundwork for a forthcoming study of the radial

quantization of BPS black holes [17], and possibly other physical applications.

1.2 Outline

With this motivation in mind, the goal of the present work is to further elucidate the

geometry of the twistor space Z and the Swann space S, and in particular obtain explicit

formulae for their respective complex structures and Kähler potentials.

The outline of this paper is as follows. In section 2, we review the construction of

the twistor space Z and Swann space S on a general quaternionic-Kähler manifold M;

their description in terms of a “generalized prepotential” G (not to be confused with the

one controlling higher-derivative corrections on the vector multiplet side) in cases when

sufficiently many tri-holomorphic isometries are present; and the relation, recently found

in [23, 24], between G and the prepotential F in the case when M is the c-map of a

projective special Kähler manifold Ms.

In section 3, we compute the hyperkähler potential χ on S and the Kähler potential

KZ on Z, by relaxing the SU(2) gauge choice made in [23]; the latter was sufficient for the
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purpose of computing the metric on the quaternionic-Kähler base but unsuitable for our

present purposes. In particular, we uncover a simple relation (3.32) between the Kähler

potential KZ and the Hesse potential Σ on Ms, or equivalently the Bekenstein-Hawking en-

tropy of four-dimensional BPS black holes. We also construct the “covariant c-map” (3.43)

and “twistor map” (3.55), which relate the complex coordinates on S or Z, adapted to the

Heisenberg symmetries, to the real coordinates on M× (R4/Z2) or M×CP
1, respectively.

In section 4, we apply these techniques to find the general solution for BPS geodesic

motion on the c-map manifold M; this is relevant to the problem of constructing spherically

symmetric BPS black holes or instantons in N = 2 supergravity. While the physical

results obtained are not new, this exercise illustrates the power of the twistor formalism,

uncovers the algebraic geometry behind these BPS configurations, and provides a physical

explanation for the relation between KZ and the black hole entropy.

In section 5, we use the twistor map found in section 3 to give a fully explicit inte-

gral representation (5.25) of the quaternionic Penrose transform, which relates elements of

H1(Z,O(−k)) to functions on the quaternionic-Kähler base M, satisfying certain massless

field equations. We also find the relevant inner product (5.29), under some assumptions

that we spell out. As an example, we compute the Penrose transform (5.35) of an eigen-

mode (5.30) of the Heisenberg group with vanishing central character on Z. As will be

argued in [17], this is the exact radial wave function for a BPS black hole with fixed electric

and magnetic charges, in the two-derivative supergravity approximation.

Finally, some additional formulae and derivations used in the main text are given in

an appendix at the end of this paper.

Many of the results in this paper were first observed by studying c-maps based on

Hermitian symmetric tube domains. As we preview in section 3.3, the corresponding

twistor spaces provide a transparent geometric realization of certain group representations

constructed in [25], which will be discussed in a separate paper [26].

1.3 Notation

For the reader’s convenience, we collect here and in table 1 some notation used (and defined)

at various places throughout the paper. Throughout the paper M is a quaternionic-Kähler

manifold of real dimension 4n. Except in sections 2.1, 2.2 and 5.1, M is obtained by the c-

map from a special Kähler manifold Ms. The table summarizes the various spaces related

to M and the coordinate systems used in the paper. The range of the indices are a ∈
{1, . . . , n−1}, Λ ∈ {0}∪{a} = {0, . . . , n−1}, I ∈ {[}∪{Λ} = {[, 0, . . . , n−1}, A′ ∈ {1, 2},
A ∈ {1, . . . , 2n}. We use generic coordinates xµ on M to lighten the notation in statements

not depending on a particular coordinate system; similarly (ui, ūi) and (zℵ, z̄ℵ̄) denote

generic complex coordinates for Z and S. We sometimes drop indices inside arguments

of functions, e.g. we write the Kähler potential on Z as KZ(u, ū). We emphasize that

z, za, zℵ are all unrelated, as are xI , xµ and ζ, ζΛ (ζ is a coordinate on the twistor space of

S, introduced in section 2.2).
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Notation Space Real dim Coordinate systems

Ms special Kähler manifold 2n − 2 (za, z̄a)

M quaternionic-Kähler manifold
4n

(U, ζΛ, ζ̃Λ, σ, za, z̄a)

(c-map of Ms) (xµ)

Z complex contact manifold

(twistor space of M)
4n + 2

(ξΛ, ξ̃Λ, α, ξ̄Λ,
¯̃
ξΛ, ᾱ)

(xµ, z, z̄)

(ui, ūi)

J 3-Sasakian manifold
4n + 3 (ui, ūi, φ)

(S3 bundle over M)

S 4n + 4

(vI , v̄I , xI , θI)

hyperkähler manifold

(Swann space of M)

(vI , v̄I , wI , w̄I)

(ui, λ, ūi, λ̄)

(xµ, πA′
, π̄A′

)

(zℵ, z̄ℵ̄)

Table 1: Overview of the manifolds discussed in the paper and their coordinate systems.

2. Projective superspace description of the c-map: a review

In this section, we review the projective superfield description of the c-map, first obtained

in [23, 24]. In section 2.1, we recall some standard facts about the geometry of quaternionic

Kähler manifolds, their Swann space and twistor space. In section 2.2, we review the

construction of the metric on S in the tensor multiplet formalism, in the case where S
admits n + 1 commuting triholomorphic isometries. Finally, in section 2.3, we specialize

to the case where M is obtained via the c-map from a special Kähler manifold. In this

case we review the relation between the “generalized prepotential” G entering the tensor

multiplet construction and the prepotential F on the special Kähler base.

2.1 Geometry of quaternionic-Kähler manifolds

In this subsection, we collect some standard results about the geometry of quaternionic-

Kähler manifolds. Most of these facts can be found in [18, 19] or inferred from these

references.

A quaternionic-Kähler manifold M is a Riemannian manifold of real dimension 4n with

holonomy group USp(2n)USp(2) = (USp(2n) × USp(2))/Z2. The complexified tangent

bundle of such an M splits locally as

TCM = E ⊗ H , (2.1)

where E and H are complex vector bundles of respective dimensions 2n and 2. This

decomposition is preserved by the Levi-Civita connection. Hence after choosing local frames

for E and H one can trade the vector index µ in TCM for a pair of indices AA′, where

A ∈ {1, . . . , 2n} and A′ ∈ {1, 2}. Concretely this is accomplished by contracting with

the “quaternionic vielbein”, a covariantly constant matrix of one-forms V AA′
= V AA′

µ dxµ.
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We will sometimes convert between µ and AA′ without writing V explicitly. V satisfies a

pseudo-reality condition

(V AA′

)∗ = εABεA′B′V BB′

. (2.2)

Here εAB = ε[AB] and εA′B′ = ε[A′B′] are covariantly constant tensors in ∧2(E) and ∧2(H)

respectively, which we use to raise and lower the A,A′ indices. We will always choose local

frames in H such that ε12 = 1 and the Hermitean metric is ηA′B̄′ = δB′

A′ , and denote the

corresponding coordinates in the fiber of H by πA′
. Similarly, our frames in E will always

be orthonormal, ηAB̄ = δB
A .

The spin connection 1-form on M splits into

ΩAA′;BB′ = εAB pA′B′ + εA′B′ qAB , (2.3)

where qAB = q(AB) and pA′B′ = p(A′B′) are connection 1-forms valued respectively in

usp(2n) ⊂ S2(E) and usp(2) ⊂ S2(H). From the quaternionic vielbein one can construct

the metric as well as a triplet ωA′B′
= ω(A′B′) of 2-forms:

ds2
M = εAB εA′B′ V AA′

V BB′

, ωA′B′

=
1

2
εAB

(

V AA′ ∧ V BB′

+ V AB′ ∧ V BA′
)

. (2.4)

If M were hyperkähler , the ωA′B′
would be the Kähler forms for the three complex

structures, and in particular they would be separately closed. In the quaternionic-Kähler

case the triplet is covariantly closed with respect to the USp(2) connection:

dωA′

B′ + pA′

C′ ∧ ωC′

B′ − pC′

B′ ∧ ωA′

C′ = 0 . (2.5)

Moreover, the USp(2) curvature is proportional to ωA′

B′ :

dpA′

B′ + pA′

C′ ∧ pC′

B′ =
ν

2
ωA′

B′ . (2.6)

Quaternionic-Kähler manifolds are always Einstein; the constant ν appearing in (2.6) is

related to the scalar curvature by R = 4n(n + 2)ν, see e.g. [27]. We shall restrict to the

negative curvature case (this is always the case for the manifolds appearing in sigma models

coupled to N = 2 supergravity [28]).

By contracting ωA′B′
with the metric one obtains the quaternionic structure operators

JA′B′
. These satisfy the quaternionic algebra and are covariantly constant with respect to

the USp(2) connection, but do not have vanishing Nijenhuis tensor (see e.g. appendix B

in [27]).

There is a standard way to construct a hyperkähler manifold of dimension 4n + 4,

fibered over M: namely, the total space S of H×/Z2 over M, where H× is the C
2 bundle

H with the zero section deleted, and Z2 acts as πA′ → −πA′
on the fiber of H. S is known

as the “Swann space” or “hyperkähler cone” of M [19, 20]. Its metric is

ds2
S = |DπA′ |2 +

ν

4
r2ds2

M . (2.7)

Here, r2 ≡ |π1|2 + |π2|2 is the USp(2) invariant norm in the fiber of H, and

DπB′ ≡ dπB′

+ pB′

C′πC′

(2.8)
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is the covariant differential of πA′
. For ν < 0, the case of interest in this paper, the

metric (2.7) has indefinite signature (4, 4n). In [19] it is shown that it is hyperkähler , with

hyperkähler potential (a simultaneous Kähler potential for all complex structures)1

χ(x, πA′

, π̄A′

) = r2 . (2.9)

The metric (2.7) admits a SU(2) group of isometries, acting on the R
4/Z2 fiber by

δπA′

= iε3π
A′

+ ε−π̄A′

, δπ̄A′

= −iε3π̄
A′

+ ε+πA′

, (2.10)

and a homothetic Killing vector ∂r, equal to the gradient of the hyperkähler potential

χ = r2. It may also be written as

ds2
S = |DπA′ |2 +

ν

2
|πB′V BB′ |2 (2.11)

reflecting one of the complex structures on S, for which DπA′
(A′ ∈ {1, 2}) and πB′V BB′

(B ∈ {1, . . . , 2n}) are of type (1, 0) [18], and the Kähler form is

ωS = i
(

DπA′ ∧ Dπ̄A′ +
ν

2
πA′π̄B′ωA′B′

)

. (2.12)

In this paper we will always use this complex structure on S. The other complex struc-

tures are obtained by rotating this one under SU(2); their respective Kähler forms can be

obtained by taking the real and imaginary part of the (2,0) form

Ω = DπA′ ∧ DπA′ +
ν

2
πA′πB′ωA′B′

. (2.13)

Ω is not manifestly holomorphic, but indeed defines a holomorphic symplectic structure on

S. There is also a natural holomorphic Liouville form

X = πA′DπA′

, (2.14)

which obeys (using (2.6))

dX = Ω , ιEΩ = 2X , (2.15)

where E is the “Euler” vector field

E = πA′ ∂

∂πA′ . (2.16)

The cross-section of S at a fixed value of the hyperkähler potential defines a 3-Sasakian

space J , which is a S3 fiber bundle over the quaternionic-Kähler space M. It is useful to

view S3 as a Hopf fibration over S2, and choose coordinates

eiφ =
√

π2/π̄2 , z = π1/π2 , (2.17)

on the U(1) fiber and S2 base respectively. The metric (2.7) can then be rewritten as

ds2
S = dr2 + r2

[

σ2
1 + σ2

2 + σ2
3 +

ν

4
ds2

M

]

(2.18)

1This formula holds for quaternionic-Kähler spaces with positive scalar curvature, but can easily be

continued to the case of negative scalar curvature by flipping the sign of r2 [29].
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where σi are a triplet of 1-forms,

σ1 + iσ2 =
dz + P
1 + z̄z

, σ3 = dφ − i

2(1 + zz̄)
(z̄dz − zdz̄) − i

r2
πA′

pB′

A′ π̄B′ , (2.19)

and P is the “projectivized” USp(2) connection,

P = p1
2 + z(p1

1 − p2
2) − z2p2

1 . (2.20)

In (2.18), the term in brackets is the metric on J .

By dividing out the U(1) action on the fiber of J one obtains a (4n + 2)-dimensional

space Z = J /U(1), the twistor space of M. Since the U(1) action preserves the Kähler

form (2.12) on S and the complex structure on S relates ∂φ to the homothetic Killing

vector ∂r, Z can be thought of as a Kähler quotient, Z = S//U(1). The Kähler metric is

ds2
Z =

|dz + P|2
(1 + zz̄)2

+
ν

4
ds2

M , (2.21)

with the Kähler form

ωZ = i

(

(dz + P) ∧ (dz̄ + P̄)

(1 + zz̄)2
+

ν

2

π̄A′πB′

r2
ωA′B′

)

. (2.22)

A Kähler potential KZ may be obtained from the hyperkähler potential χ on S by writing

χ(λ, λ̄, u, ū) = |λ|2eKZ (u,ū) , (2.23)

where (ui, λ) are complex coordinates on S, such that ui are inert under the U(1) action

and λ transforms with weight 1.

As is well known, the Kähler quotient Z = S//U(1) may also be described as Z =

S/C
×; the C

× action is the one generated by E , πA → µπA. This realizes Z as a complex

manifold equipped with a natural holomorphic line bundle, namely S itself: we call this line

bundle O(−2), and its k-th power O(−2k).2 A (holomorphic) function on S, homogeneous

of degree ` under πA → µπA, is thus a (holomorphic) section of O(`). From this point of

view, (2.23) is simply the statement KZ = log‖s‖2 where s is a local holomorphic section

of O(−1) and ‖·‖ is the norm induced from the one in H.

The Liouville form X on S descends to a complex contact structure on Z [18], given

by an O(2)-valued holomorphic 1-form X. (Indeed, by definition an O(2)-valued 1-form

on Z is the same as a 1-form on S which is homogeneous of degree 2 in the πA′
and has

zero inner product with E .) Using (2.15), X may also obtained by contracting Ω with 1
2E .

To represent it as a 1-form on Z we must choose some local section of O(2), thus locally

trivializing the line bundle. One natural choice is given by the degree 2 homogeneous

(non-holomorphic) function π1π2. Then a short computation from (2.14) gives

X =
dz + P

z
. (2.24)

2This notation is justified by the fact that O(−2) restricts to the usual line bundle O(−2) over each CP
1

fiber of Z. Locally one can define a bundle O(−1) as well, namely the total space of H× instead of H×/Z2.

However, the decomposition TCM = E ⊗ H need not exist globally over M, so globally O(−1) need not

exist.
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Dually, Z has a holomorphic O(−2)-valued vector field, the “Reeb vector” Y , determined

by the conditions

ιY dX = 0 , ιY X = 1 . (2.25)

Finally, one may obtain the quaternionic-Kähler manifold M by projecting the met-

ric (2.21) down to the base, orthogonally to Y and its complex conjugate. The process of

going from S to M is known in supergravity as the superconformal quotient. An important

fact is that isometries of M compatible with the quaternionic structure lift to holomorphic

isometries of Z, and to tri-holomorphic isometries of S. More details on the map between

hyperkähler and quaternionic-Kähler spaces can be found in [30, 20, 31].

2.2 Tri-holomorphic isometries and projective superspace

In the last subsection we described how to start from a 4n-dimensional quaternionic-Kähler

space M and build up its (4n + 4)-dimensional hyperkähler cone S. Here we consider the

special case where S admits n + 1 commuting triholomorphic isometries. In this case S
admits a very simple description, which from the physical point of view comes from the

duality between hypermultiplets and tensor multiplets in four dimensions, and the existence

of the (off-shell) projective superspace formalism for tensor multiplets. We review that

description here; in section 3 we will use it to get geometric information about S and Z.

So suppose S is a hyperkähler manifold of dimension 4(n + 1) with n + 1 commut-

ing triholomorphic isometries. Then the metric is of the “generalized Gibbons-Hawking”

form [32, 33],

ds2
S =LxIxJ

(

1

4
dxIdxJ + dvIdv̄J

)

+
1

4
LxIxJ (

dθI + iLvKxIdvK − iLxI v̄K dv̄K
) (

dθJ + iLvLxIdvL − iLxI v̄Ldv̄L
)

.

(2.26)

In (2.26) we use coordinates (vI , v̄I , xI , θI) on S: vI is complex and xI , θI are real. L is a

function of (vI , v̄I , xI), known as the “tensor Lagrangian” because of the way it enters the

tensor multiplet formalism. We also denoted LxIxJ ≡ ∂xI∂xJL etc, and use LxIxJ

for the

inverse matrix to LxIxJ .

The requirement that (2.26) is hyperkähler , and moreover that it has a homothetic

Killing vector, leads to constraints on L [20]: L must be homogeneous of degree 1 in

(vI , v̄I , xI), and invariant under a common phase rotation vI → eiϑvI . Furthermore, L
must satisfy a set of linear partial differential equations, given as eqs. (5.10) in [20]. Any

solution of these constraints may be expressed as a contour integral

L(vI , v̄I , xI) = Im

∮

C

dζ

2πiζ
G(ηI(ζ)) , (2.27)

where ηI are “real O(2) projective superfields”, written

ηI =
vI

ζ
+ xI − v̄Iζ , (2.28)
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and G(ηI) is a holomorphic function, homogeneous of degree 1 in its arguments, which we

call the “generalized prepotential”. The function G and contour C completely specify the

local hyperkähler geometry of S.

ζ can be thought of as a stereographic coordinate on the CP
1 fiber of the twistor space

over S [33]. As we shall see, at least for the cases we study in the next section, after

evaluating the contour integral by residues, ζ becomes identified up to a phase with a

natural stereographic coordinate z on the twistor space Z over M.

To make one of the complex structures of S explicit, one can trade the real coordinates

(xI , θI) for the complex coordinates

wI =
1

2
(LxI + iθI) . (2.29)

Then the tri-holomorphic isometries θI → θI + εI correspond to imaginary shifts of wI .

The metric (2.26) is hyperkähler , and its hyperkähler potential is the Legendre transform

of L with respect to all xI , obtained by first computing

χ(vI , v̄I , χI) ≡ L(v, v̄, x) − χI xI , χI =
∂L
∂xI

. (2.30)

and then substituting χI = wI + w̄I to obtain χ(vI , wI , v̄
I , w̄I). The hyperkähler cone

corresponds to an open domain in the space R
4n+4 spanned by the variables vI , wI , bounded

by the tip of the cone χ = 0.

χ is a function of (vI , v̄I , wI + w̄I) only, and has scaling weight 2 under the R
× action

vI → µ2vI , wI → wI . (2.31)

Moreover, it is invariant under SU(2) transformations acting on (vI , wI) as [20]

δvI = iε3vI + ε+xI , δv̄I = −iε3v̄I + ε−xI , δwI = ε+LvI , δw̄I = ε−Lv̄I , (2.32)

where xI is related to (vI , wI , v̄
I , w̄I) by the inverse Legendre transform,

xI =
∂χ

∂χI
. (2.33)

These transformations reflect the fact that ~rI = (r3, r+, r−)I = (xI , 2vI , 2v̄I) transforms

linearly as a three-vector,

δxI = −2(ε−vI + ε+v̄I) , δvI = iε3vI + ε+xI , δv̄I = −iε3v̄I + ε−xI . (2.34)

The holomorphic symplectic and Liouville forms on S take the simple form [20]

Ω = dwI ∧ dvI , X = vI dwI , (2.35)

so (vI , wI) can be thought of as holomorphic Darboux coordinates for S.

As described in section 2.1, the twistor space Z can be obtained by a C
× quotient of

S. In the coordinates (vI , wI) the relevant C
× action is just complex multiplication on all
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the vI [20]. So we can single out one coordinate, say v[, and define coordinates (ξΛ, ξ̃Λ, α)

(collectively denoted as ui in section 2.1) on Z by

vΛ = v[ξΛ , wΛ =
i

2
ξ̃Λ , w[ =

1

4i

(

α + ξΛξ̃Λ

)

. (2.36)

In addition, λ2 = v[ defines a local trivialization of O(−2) over Z. By homogeneity, the

hyperkähler potential χ factorizes as in (2.23),

χ =
√

v[v̄[ eKZ(u,ū) . (2.37)

We will use this relation in section 3.3 to determine KZ .

Finally, expressing the holomorphic symplectic form Ω in terms of v[ and (ξΛ, ξ̃Λ, α),

and contracting with ∂v[ , gives the holomorphic contact form on Z and its associated Reeb

vector [20],

X = 2(dα + ξ̃ΛdξΛ − ξΛdξ̃Λ) , Y =
1

2

∂

∂α
. (2.38)

These expressions are valid in the holomorphic trivialization v[ = 1, and motivated the

introduction of the coordinates in (2.36).

2.3 c-map spaces and their generalized prepotentials

We now specialize to the case where the quaternionic-Kähler manifold M arises by applying

the c-map to a projective (i.e. non-rigid) special Kähler manifold Ms.

First recall that locally the geometry of Ms is determined by a single holomorphic

function F (XΛ), homogeneous of degree two (Λ ∈ {0, . . . , n − 1}). Namely, choosing a

symplectic section (XΛ(z), FΛ(X(z)) ≡ ∂F/∂XΛ) over Ms, the metric in Ms is

Gab̄ = ∂a∂b̄K(X(z), X̄ (z̄)) , (2.39a)

K(X, X̄) ≡ − log K(X, X̄) , (2.39b)

K(X, X̄) ≡ XΛNΛΣX̄Σ , (2.39c)

where NΛΣ(X, X̄) is given by the usual special geometry formula

NΛΣ ≡ i
(

FΛΣ − F̄ΛΣ

)

, FΛΣ ≡ ∂XΛ∂XΣF . (2.40)

Now we define M locally as an R
2n+1 bundle over R

× ×Ms: the fiber is parameter-

ized by 2n + 1 real coordinates (ζΛ, ζ̃Λ, σ), the R
× factor by a real coordinate eU . The

quaternionic-Kähler metric on M is then [1, 2]

ds2
M = 4dU2−e−2U (N+N̄ )ΛΣWΛW̄Σ+

1

16
e−4U

(

dσ+ζ̃ΛdζΛ−ζΛdζ̃Λ

)2
+ 4Gab̄ dzadz̄b̄ (2.41)

where we defined

NΛΣ ≡ −iF̄ΛΣ − (NX)Λ(NX)Σ
(XNX)

, WΛ ≡ (N + N̄ )−1ΛΣ
(

N̄ΣΠdζΠ + idζ̃Σ

)

. (2.42)
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This space admits isometries acting on the R
2n+1 fiber,

PΛ = ∂ζ̃Λ
− ζΛ∂σ , QΛ = −∂ζΛ − ζ̃Λ∂σ , K = ∂σ , (2.43)

which satisfy the Heisenberg algebra

[PΛ, QΣ] = −2 δΛ
Σ K . (2.44)

Physically, the metric (2.41) describes the classical moduli space of the D = 3 theory

obtained by beginning with a D = 4, N = 2 supergravity theory coupled to n− 1 Abelian

vector multiplets, then reducing the theory along a spacelike direction. In this context, the

scalars za are the moduli of the D = 4 theory (e.g. Kähler or complex structure moduli for

Type IIA or IIB respectively compactified on a Calabi-Yau threefold), eU is the radius of

the fourth direction, ζΛ are the fourth component of the gauge fields, ζ̃Λ are the Poincaré

duals of the D = 3 one-forms coming from the reduction of the vector fields in 4 dimensions,

and σ is the dual of the Kaluza-Klein connection. Worldsheet instantons in general break

the isometries (2.43).

The same type of metric also occurs as the tree-level hypermultiplet moduli space

already in 4 dimensions, with a different interpretation of the coordinates: now za are

complex structure or Kähler moduli respectively in Type IIA or IIB, e2U = eφ is the

four-dimensional dilaton, and (ζΛ, ζ̃Λ, σ) are scalars coming from the Ramond-Ramond

sector. Space-time instantons are now responsible for the breaking of the isometries (2.43).

T-duality along the fourth dimension exchanges these two descriptions of the moduli space.

Finally, the analytic continuation (ζΛ, ζ̃Λ) → i(ζΛ, ζ̃Λ) of the metric (2.41), which arises

from the reduction of D = 4, N = 2 supergravity coupled to n−1 Abelian vector multiplets

along a timelike direction, is relevant to the study of stationary black hole solutions [10].

This pseudo-Riemannian manifold, dubbed the c∗-map of Ms in [10], is of a type called

“para-quaternionic-Kähler ” in the mathematical literature (see e.g. [34] for a recent review,

and [11] for an extensive discussion of the rigid c∗-map).

Having defined M we now turn to its description in the tensor multiplet formalism.

In [23, 24] (see also [35, 36]), it was shown that the quaternionic-Kähler metric (2.41) is

determined by a generalized prepotential

G(ηI) =
F (ηΛ)

η[
, (2.45)

where F (ηΛ) is a prepotential for the special Kähler manifold Ms. Here, the indices

Λ ∈ {0, . . . , n−1} as usual in special geometry, while the indices I take one extra value, I ∈
{[, 0, . . . , n− 1}. Physically, the projective superfield η[ describes the compensating tensor

multiplet used in superconformal calculus (see appendix A). Geometrically, it provides the

extra quaternionic variable which extends the quaternionic-Kähler M to its Swann space

S. In order to prove (2.45), the authors of [23, 24] evaluated the Legendre transform (2.30)

in a particular SU(2) gauge, where

v[ = 0 . (2.46)
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After performing the superconformal quotient, they found agreement with the metric (2.41)

upon identifying3

XΛ =
vΛ

√
x[

, e2U =
K(X, X̄)

4x[
, (2.47a)

ζΛ =
xΛ

x[
, ζ̃Λ = −i(wΛ − w̄Λ) − 1

2
(FΛΣ + F̄ΛΣ)ζΣ , (2.47b)

σ = 2i(w[ − w̄[) + ζΛζ̃Λ +
1

2
ζΛ(FΛΣ + F̄ΛΣ)ζΣ . (2.47c)

Moreover, the hyperkähler potential in the limit (2.46) was found to be

χ(vI , v̄I , wI , w̄I) =
√

2 K(vΛ, v̄Λ) [(w + w̄)ΛNΛΣ(w + w̄)Σ − (w + w̄)[] , (2.48)

and could be rewritten in a much simpler way as

χ(v, v̄, w, w̄) = K
[

XΛ(v, v̄, w, w̄), X̄Λ(v, v̄, w, w̄)
]

. (2.49)

It should be stressed that the gauge-fixing (2.46) is only suitable for the purpose of eval-

uating the metric on the base: it cannot be used directly to obtain the metric on the

hyperkähler cone or on the twistor space. In the next section, we repeat the analysis

of [23], without making the gauge choice (2.46).

3. Kähler potentials, covariant c-map and twistor map

In this section, we apply the recipe outlined in section 2.2 to the generalized prepoten-

tial (2.45). In sections 3.1, 3.2 and 3.3, we evaluate the contour integral (2.27), take its

Legendre transform, and obtain the hyperkähler potential χ on the hyperkähler cone S,

as well as the Kähler potential KZ on the twistor space Z. In section 3.4, we perform

the superconformal quotient from S to M, and identify the real coordinates on M as

R
××SU(2) functions on S; we refer to the relations (3.43) as the “covariant c-map”. Some

of the technical details of the derivation are presented in appendix A. In section 3.5, we

work out the converse, and express the complex coordinates on S and Z in terms of the

real coordinates on M× R
4 and M× S2, respectively; we refer to the relations (3.55) as

the “twistor map”.

3.1 The tensor Lagrangian

We start by evaluating the tensor Lagrangian (2.27) based on the generalized prepoten-

tial (2.45), without making any gauge choice. The tensor Lagrangian is the imaginary part

of

I =

∮

C

dζ

2πiζ

F (ηΛ)

η[
=

∮

C

dζ

2πiζ2

F (ζηΛ)

ζη[
, (3.1)

where the contour C+ is taken to be a small circle around a root ζ+ of ζη[, given in (2.28)

as

ζη[ = −v̄[(ζ − ζ+)(ζ − ζ−) (3.2)

3Compared to [23, 24], we have set φ = 2U, AΛ = 1

2
ζΛ, BΛ = −ζ̃Λ and multiplied σ by 1

4
.
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where

ζ± =
x[ ∓ r[

2v̄[
, ζ+ − ζ− = −r[

v̄[
, ζ+ζ− = −v[

v̄[
, (3.3)

with r[ =
√

(x[)2 + 4v[v̄[. Note in particular that the two roots are antipodes on CP
1:

ζ+ζ− = −1 . (3.4)

It will be convenient also to introduce the real quantities

C = r[ − x[ , C̃ = r[ + x[. (3.5)

We can now easily do the contour integral (3.1) and find

I =
F (ηΛ(ζ+))

r[
, (3.6)

with

ηΛ(ζ±) = xΛ − x[

2

(vΛ

v[
+

v̄Λ

v̄[

)

± r[

2

(

− vΛ

v[
+

v̄Λ

v̄[

)

, (3.7)

which obeys

[ηΛ(ζ+)] = ηΛ(ζ−) . (3.8)

Taking the imaginary part of (3.6), we find the tensor Lagrangian

L(v, v̄, x) = − i
2r[

(

F (ηΛ
+) − F̄ (ηΛ

−)
)

(3.9)

Here and henceforth, we denote ηΛ
± ≡ ηΛ(ζ±).

To compute the hyperkähler potential χ we have to take the Legendre transform

of (3.9) with respect to xI . Using the homogeneity of F , which gives

2F (η+) = ηΛ
+FΛ(η+) , FΛ(η+) = ηΣ

+FΛΣ(η+) , (3.10)

it is an easy exercise to show that (with K(η+, η−) ≡ ηΛ
−NΛΣηΣ

+)

L(v, v̄, x) =
1

4r[
K(η+, η−) +

1

2
(ηΛ

+ + ηΛ
−)∂xΛL (3.11)

= xΛ∂xΛL +
1

4r[
K(η+, η−) − x[

2

(

vΛ

v[
+

v̄Λ

v̄[

)

∂xΛL . (3.12)

From (3.12) it follows directly that the Legendre transform of L with respect to xΛ is

〈

L − xΛχΛ

〉

xΛ =
1

4r[
K(η+, η−) − x[

2

(

vΛ

v[
+

v̄Λ

v̄[

)

χΛ

∣

∣

∣

∣

∂L

∂xΛ
=χΛ

, (3.13)

where we introduced the “magnetic potential”4 χΛ as the conjugate to xΛ, and the angle

brackets indicate that we evaluate at a critical value of xΛ.

To finish the Legendre transform computation of the hyperkähler potential χ from L,

we would need to transform over the remaining x variable x[. In principle one could do

this by first expressing the xΛ as functions of (vI , v̄I , χΛ, x[), substituting these expressions

in K(η+, η−), and then directly computing the transform over x[. In the next subsection

we will see a more elegant way forward.

4This terminology anticipates the relation between χΛ and the magnetic charge pΛ, explained in sec-

tions 3.2 and 4.

– 14 –



J
H
E
P
0
4
(
2
0
0
7
)
0
3
8

3.2 Legendre transform, Hesse potential and black hole entropy

In the last section we introduced the magnetic potentials χΛ, determined by extremizing

the left side of (3.13) to be

χΛ =
∂L
∂xΛ

= − i

2r[

(

FΛ(η+) − F̄Λ(η−)
)

. (3.14)

It turns out to be convenient (as suggested by symplectic invariance) to introduce as well

the “electric potentials”

φΛ ≡ − i

2r[

(

ηΛ
+ − ηΛ

−

)

=
i

2

(

vΛ

v[
− v̄Λ

v̄[

)

, (3.15)

so that φ̃Λ ≡ r[φΛ and χ̃Λ ≡ r[χΛ are related to ηΛ
± by

(

φ̃Λ

χ̃Λ

)

= Im

(

ηΛ
+

FΛ(η+)

)

. (3.16)

This equation, which determines the complex variable ηΛ
+ (at least locally) in terms of the

real quantities (φ̃Λ, χ̃Λ), is familiar from the study of the attractor mechanism in N = 2

supergravity [37 – 39, 8]; namely, in the geometry of a BPS black hole with charges (pΛ, qΛ),

the properties of the horizon are determined by solving the equations
(

pΛ

qΛ

)

= Re

(

XΛ

FΛ(X)

)

(3.17)

for XΛ: the moduli at the horizon are given by the ratios of the XΛ, while the tree-level

Bekenstein-Hawking entropy5 of the black hole is given by

K(X, X̄) = 4Σ(pΛ, qΛ) , (3.18)

where Σ(pΛ, qΛ) is a homogeneous function of degree 2 of the charge vector (pΛ, qΛ), in-

variant under symplectic transformations. The converse of the map (3.17) is then given

by

XΛ = pΛ + i
∂Σ(p, q)

∂qΛ
, FΛ(X) = qΛ − i

∂Σ(p, q)

∂pΛ
. (3.19)

The function Σ(pΛ, qΛ) is also familiar as the Hesse potential of rigid special Kähler geom-

etry, where it determines the metric in real coordinates [40 – 42].

Applying the above to (3.16), and making use of the homogeneity of F , we find

K(η+, η−) = 4(r[)2 Σ(φΛ, χΛ) (3.20)

and

ηΛ
+ = r[

(

iφΛ − ∂Σ(φ, χ)

∂χΛ

)

, FΛ(η+) = r[

(

iχΛ +
∂Σ(φ, χ)

∂φΛ

)

. (3.21)

In our computation of the Legendre transform below, the form (3.20) of K will be useful,

because all the x[ dependence has been isolated in the prefactor.

5We have chosen a convenient normalization for Newton’s constant, GN = π .
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3.3 Potentials on hyperkähler cone and twistor space

Substituting the result (3.20) in (3.13), we now consider the remaining Legendre transform

with respect to x[,

〈

L − xΛχΛ − x[χ[

〉

xΛ,x[
=

〈

r[Σ(φΛ, χΛ) − x[χ̃[

〉

x[
, (3.22)

where we defined

χ̃[ ≡ χ[ +
1

2

(

vΛ

v[
+

v̄Λ

v̄[

)

χΛ . (3.23)

We want to determine the value of x[ extremizing the right side. Noting that φΛ and χΛ

are independent of x[ (the latter by definition of the Legendre transform), we find

x[ = ± 2
√

v[v̄[ χ̃[
√

Σ2(φ, χ) − χ̃2
[

, (3.24)

We assume that the term under the square root is positive definite in the region of interest,

and choose the upper sign below; while a solution with the opposite sign does in principle

exist, it leads to a much more complicated form of the hyperkähler potential. From (3.24)

it easily follows that

r[ =
2
√

v[v̄[ Σ(φ, χ)
√

Σ2(φ, χ) − χ̃2
[

. (3.25)

We then find that (3.22) simplifies to

〈

L − xΛχΛ − x[χ[

〉

xΛ,x[
= 2

√

v[v̄[
(

Σ2(φ, χ) − χ̃2
[

)

. (3.26)

As described below (2.30), the hyperkähler potential χ is obtained from this Legendre

transform upon replacing χI by wI + w̄I . Inserting as well the definitions (3.15), (3.23) of

φΛ and χ̃[, we conclude that χ is given in terms of the complex variables (vI , wI) by

χ(v, v̄, w, w̄) = 2
√

v[v̄[
{

Σ2
[

i
2

(

vΛ

v[
− v̄Λ

v̄[

)

, wΛ + w̄Λ

]

−
[

w[ + w̄[ + 1
2

(

vΛ

v[
+ v̄Λ

v̄[

)

(wΛ + w̄Λ)
]2

}
1
2 (3.27)

The condition that the term in bracket be strictly positive defines an open set in R
4n+4,

which we identify as the Swann space of M.

Thus, the hyperkähler potential of the Swann space S is simply expressed in terms of

the Hesse potential Σ, or equivalently the Bekenstein-Hawking entropy functional.6 This

parallels the rigid case, where the Hesse potential Σ is known to provide a Kähler potential

for the rigid c-map in complex Darboux coordinates [1, 40, 42].

6The relation of χ to the black hole entropy will find a natural physical explanation in section 4,

Equation (4.26).
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We note that the hyperkähler potential (3.27), and therefore the metric on S, are

invariant under the Killing vector fields

PΛ =
i

2
∂wΛ

+ c.c. , QΛ = −v[∂vΛ + wΛ∂w[
+ c.c. , K = − i

4
∂w[

+ c.c. (3.28)

satisfying the Heisenberg algebra (2.44). Here, PΛ and K are the n + 1 triholomorphic

isometries afforded by the tensor multiplet description, while QΛ are additional triholomor-

phic isometries following from the invariance of the generalized prepotential (2.45) under

transformations [43, 35]

ηΛ → ηΛ + εΛη[ . (3.29)

In section 3 we show that (3.28) descend to the isometries (2.43) of M under the super-

conformal quotient.

We may obtain another useful expression for χ by switching back from w[ to the tensor

multiplet variable x[. Namely, using (3.24) and (3.26) gives directly

χ = 4
v[v̄[

r[
Σ(φ, χ) . (3.30)

Using the relation (3.20) between Σ and the Kähler potential on Ms, this can also be

written

χ =
v[v̄[

(r[)3
K

(

ηΛ
+, ηΛ

−

)

. (3.31)

This relation between the geometry of S and that of the special Kähler manifold Ms will

become useful in section 3.5.

To discuss the twistor space Z, we use the coordinates (ξΛ, ξ̃Λ, α) introduced in (2.36).

Plugging them into (3.27), one finds the form of (2.37), with

KZ = 1
2 log

{

Σ2
[

i
2(ξΛ − ξ̄Λ), i

2(ξ̃Λ − ¯̃
ξΛ)

]

+ 1
16

[

α − ᾱ + ξΛ ¯̃
ξΛ − ξ̄Λξ̃Λ

]2
}

+ log 2 (3.32)

So, as for χ, the Kähler potential on the twistor space Z is simply expressed in terms

of the Hesse potential Σ on the special Kähler manifold Ms (or, rather, its rigidification

M′
s). The range of (ξΛ, ξ̃Λ, α) is restricted to the domain where the sign of the bracket

in (3.32) is positive: other values do not correspond to points of Z. The triholomorphic

isometries (3.28) of S descend to holomorphic isometries of Z, generated by the vector

fields

PΛ = ∂ξ̃Λ
− ξΛ∂α + c.c. , QΛ = −∂ξΛ − ξ̃Λ∂α + c.c. , K = ∂α + c.c. . (3.33)

This standard form of the Heisenberg action was an additional motivation for the change

of variable (2.36).

At this stage, we note that when the special Kähler space Ms is a Hermitian symmetric

space G/K = Conf(J)/Struc(J)×U(1), corresponding to the case where the prepotential F

is the cubic norm of a Jordan algebra J , the Hesse potential Σ becomes equal to the square

root of the quartic invariant of the conformal group Conf(J). The term in bracket is then
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recognized as the “quartic light-cone”7 N4(ξ, ξ̃, α; ξ̄,
¯̃
ξ, ᾱ) introduced in [25]; in that work,

it was shown that the locus N4 = 0 is invariant under the action of a group QConf(J) con-

taining Conf(J)× SU(2) as a subgroup; in fact, logN4 changes by Kähler transformations

under this action. This implies that the twistor space Z carries a holomorphic, isomet-

ric action of QConf(J), and that the quaternionic-Kähler base is itself a symmetric space

QConf(J)/Conf(J)×SU(2). This fact is at the root of the construction of the quaternionic

discrete series representations of QConf(J) [44]. In a separate paper [26], the constructions

of [25] will be revisited in light of this observation.

3.4 The covariant c-map

Our next task is to construct the projection from the hyperkähler cone S to the

quaternionic-Kähler base M: we will express the coordinates (U, za, z̄ā, ζΛ, ζ̃Λ, σ) on M
as (R× × SU(2))-invariant functions on S. We first list some possible candidates, and then

argue that they are indeed equal to the coordinates on M, as determined by the c-map

metric (2.41). Further details of the derivation are given in the appendix.

First we construct a candidate for U . The hyperkähler potential χ itself is SU(2)

invariant, but has weight 2 under R
×; it can be made invariant by dividing out by r[,

e2U ≡ χ

4r[
=

Σ2(φ, χ) − χ̃2
[

4Σ(φ, χ)
(3.34)

Next, recall from (2.34) that ~rI = (xI , 2vI , 2v̄I) transforms as an SU(2) vector, and has

weight 2 under R
×. Hence we can construct candidates for ζΛ by taking SU(2) invariant

dot products,

ζΛ ≡ 1

(r[)2
(~r[ · ~rΛ) =

1

(r[)2

(

x[xΛ + 2v̄[vΛ + 2v[v̄Λ
)

. (3.35)

Using (3.7), this may also be written as

ζΛ =
1

2

(

vΛ

v[
+

v̄Λ

v̄[

)

+
x[

(r[)2
Re[ηΛ

+] =
1

2
(ξΛ + ξ̄Λ) +

x[

(r[)2
Re[ηΛ

+] . (3.36)

Next we construct the coordinates zΛ on Ms. Using (2.34), one may check that under

SU(2) transformations one has

δ[ζ+ηΛ
+] =

(

iε3 − 2ε−ζ+

)

[ζ+ηΛ
+] . (3.37)

Since this is just an overall Λ-independent rescaling, we can construct ratios which are

SU(2) and scale invariant:

za ≡ ηa
+

η0
+

, a = 1, . . . , n − 1. (3.38)

The remaining coordinates ζ̃Λ and σ are trickier to obtain. Symplectic covariance

suggests considering the “electric” counterpart of (3.36),

ζ̃Λ ≡ −i(wΛ − w̄Λ) +
x[

(r[)2
Re[FΛ(η+)] =

1

2
(ξ̃Λ − ¯̃ξΛ) +

x[

(r[)2
Re[FΛ(η+)] , (3.39)

7We are grateful to M. Günaydin for extensive discussions on these constructions.
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whose SU(2) invariance can indeed be checked by a somewhat tedious computation. Finally,

an even more tedious computation shows that

σ ≡ 2i(w[ − w̄[) + i
(vΛ

v[
wΛ − v̄Λ

v̄[
w̄Λ

)

− x[

(r[)2
Re

(

ηΛ
+ ζ̃Λ − FΛ(η+) ζΛ

)

(3.40)

=
1

2
(α + ᾱ) − x[

(r[)2
Re

(

ηΛ
+ ζ̃Λ − FΛ(η+) ζΛ

)

(3.41)

is also invariant under SU(2).

We claim that the functions (U, za, z̄ā, ζΛ, ζ̃Λ, σ) on S which we have just constructed

give the projection of S down to M. As a consistency check, it is straightforward to check

that with these identifications, the triholomorphic isometries (3.28) on S descend to the

isometries (2.43) on M. A direct proof would involve performing the superconformal quo-

tient construction in our coordinates and checking that the resulting metric matches (2.41).

In appendix A we check this explicitly for the components of the metric along dζ̃Λ and dσ;

other components are fixed by supersymmetry.

Moreover, given that it was already verified in [23] that the superconformal quotient

of S yields (2.41), and the v[ → 0 limit of the coordinate functions were determined there

as (2.47), we only need to check that the v[ → 0 limit of our coordinates agrees with (2.47).

In this limit, one has to leading order in the v[-expansion

ηΛ
+ = −vΛ

v[
x[ + xΛ + O(v[) , (3.42)

while the poles ζ+ and ζ− approach 0 and ∞ respectively. It is straightforward to check

that the coordinates (U, za, z̄ā, ζΛ) defined in this section indeed agree with (2.47), whereas

a similar check for (ζ̃Λ, σ) necessitates taking into account the next-to-subleading term

in (3.42), due to the appearance of certain singular terms in the v[ → 0 limit. More-

over, (3.31) reduces to (2.49) in this limit.

We conclude that the coordinates (U, za, z̄ā, ζΛ, ζ̃Λ, σ) on the base M are given in terms

of the complex coordinates (vI , wI , v̄
I , w̄I) on the hyperkähler cone S (or equivalently, the

complex variables ξΛ, ξ̃Λ, α, ξ̄Λ,
¯̃
ξΛ, ᾱ on the twistor space Z):

e2U = χ/(4r[) , za = ηa
+/η0

+

ζΛ = 1
2

(

ξΛ + ξ̄Λ
)

+ x[

(r[)2
Re[ηΛ

+]

ζ̃Λ = 1
2

(

ξ̃Λ + ¯̃ξΛ

)

+ x[

(r[)2
Re(FΛ(η+))

σ = 1
2 (α + ᾱ) − x[

(r[)2

(

Re[ηΛ
+]ζ̃Λ − Re[FΛ(η+)]ζΛ

)

(3.43)

We call these relations the covariant c-map formulae.

3.5 The twistor map

So far we have seen that S defined by (2.45) is fibered over M, and constructed the pro-

jection map explicitly, but we have not given any information about the coordinates in

the R
4/Z2 fiber. In this section we will show that, given a choice of symplectic section
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(XΛ, FΛ(X)) over the special Kähler space Ms, there is a canonically defined coordinate

z in Z, holomorphic on each twistor fiber. Moreover we give formulas relating z and the

coordinates in M to the complex coordinates (ξΛ, ξ̃Λ, α) in Z. We refer to this transfor-

mation as the “twistor map”. We then construct a corresponding coordinate system in S,

with two complex fiber coordinates (π1, π2), such that π1/π2 = z and |π1|2 + |π2|2 = χ.

For applications such as the Penrose transform these coordinates are very convenient, as

we will see in section 5.

We start by expressing ηΛ
± in terms of ζΛ: a straightforward computation using (3.7)

and (3.36) gives

ηΛ
± =

vΛ

ζ±
+ xΛ − v̄Λζ± =

vΛ

ζ±
+

(r[)2ζΛ − 2v̄[vΛ − 2v[v̄Λ

x[
− v̄Λζ± . (3.44)

This equation can be used to express ξΛ in terms of ηΛ
±:

ξΛ = ζΛ +
1

(r[)2

(

v[

ζ+
ηΛ
+ − v̄[ζ+ηΛ

−

)

. (3.45)

Now, suppose we choose a symplectic section (XΛ(za), FΛ(za)) over the special Kähler

manifold Ms. From (3.38) we know this section is proportional to (ηΛ
+, FΛ(η+)), so there

exists z ∈ C
× with

v[

(r[)2ζ+

(

ηΛ
+

FΛ(η+)

)

= 2i eU+ 1

2
K(X,X̄)z−1

(

XΛ

FΛ(X)

)

. (3.46)

The reason for choosing the complicated prefactors in (3.46) will become clear below. Using

the definition (3.34) of U and the relation (3.31), we can rewrite (3.46) as

e
1

2
K(η+,η̄+)

(

ηΛ
+

FΛ(ηΛ
+)

)

= i
ζ+

z

√

v̄[

v[
e

1

2
K(X,X̄)

(

XΛ

FΛ(X)

)

. (3.47)

Then applying K(·, ·̄) to both sides shows that the modulus of z is equal to that of ζ+,

zz̄ = ζ+ζ̄+ =
C

C̃
, (3.48)

where C and C̃ were defined in (3.5). Substituting (3.46) and its conjugate in (3.45), and

using (3.48), now establishes our first “twistor map” relation:

ξΛ = ζΛ + 2i eU+ 1
2
K(X,X̄)

(

zX̄Λ + z−1XΛ
)

. (3.49)

This relation expresses the complex coordinates ξΛ on Z in terms of the coordinates (XΛ,

X̄Λ, U , ζΛ) on the base M and a coordinate z in the twistor fiber. The rationale for the

choice of prefactors in (3.46) is now clear: the modulus was chosen such that the ratio

between the last two terms in (3.45) has modulus |z|2, while the choice of phase ensures

that ξΛ depends holomorphically on z when the base coordinates are fixed. In other words,

the fiber over every point on the base is rationally embedded in Z, a key property of any
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twistor construction. Changing the symplectic section on M by X → efX transforms z

by the phase e
1
2
(f−f̄).

To compute ξ̃Λ, defined in (2.36), we first write ξ̃Λ = ζ̃Λ − (2iwΛ + ζ̃Λ) and use the

relation (3.39) in the last term. Using wΛ + w̄Λ = χΛ in (3.14), we then obtain

ξ̃Λ = ζ̃Λ +
1

(r[)2

(

v[

ζ+
FΛ(η+) − v̄[ζ+F̄Λ(η−)

)

. (3.50)

Eq. (3.47) then enables us to rewrite (3.50) in parallel to (3.49),

ξ̃Λ = ζ̃Λ + 2i eU+ 1

2
K(X,X̄)

(

zF̄Λ + z−1FΛ

)

. (3.51)

Finally, using (3.35), (3.39) and (3.40), one may show that

α = σ + ζΛξ̃Λ − ζ̃ΛξΛ . (3.52)

Together with (3.49) and (3.51), this implies

α = σ + 2i eU+ 1
2
K(X,X̄)

(

W̄ z + Wz−1
)

, (3.53)

where W is the symplectic invariant combination (or “superpotential”)

W = FΛ(X) ζΛ − XΛζ̃Λ . (3.54)

Altogether, (3.49), (3.51), (3.53) provide the general relation between the complex

coordinates (ξΛ, ξ̃Λ, α) on Z and the real coordinates on the base M, together with the

fiber coordinate z. Since it is one of the main results of this section, we rewrite the twistor

map below:

ξΛ = ζΛ + 2i eU+ 1

2
K(X,X̄)

(

zX̄Λ + z−1XΛ
)

ξ̃Λ = ζ̃Λ + 2i eU+ 1
2
K(X,X̄)

(

zF̄Λ + z−1FΛ

)

α = σ + 2i eU+ 1
2
K(X,X̄)

(

zW̄ + z−1W
)

(3.55)

Finally we give a similar coordinate system in the hyperkähler cone S: as discussed

in section 2, we want two complex functions π1, π2 on S, holomorphic in each fiber of

S over M, defined up to the Z2 action (π1, π2) → (−π1,−π2), and obeying π1/π2 = z,

χ = |π1|2 + |π2|2. A pair of coordinates satisfying our requirements is

(

π1

π2

)

= 2eU
√

v[

(

z
1
2

z−
1
2

)

(3.56)

Indeed, we compute

|π1|2 + |π2|2 = 4e2U |v[| (|z| + |z|−1) . (3.57)

Using |z| = |ζ+| we see that this is 4r[e2U , which by (3.34) is equal to χ as desired. With

the knowledge of (3.56), we may then translate the holomorphic contact form (2.24) into

the holomorphic trivialization v[ = 1 appropriate for comparison with (2.38),

X = 4 e2U dz + P
z

=
eKZ

1 + zz̄

√

z̄

z
(dz + P) . (3.58)
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4. Integrability of the BPS geodesic flow

In this section, we apply twistorial methods to find the general solution for supersymmetric

geodesic motion on the quaternionic-Kähler metric (2.41). After suitable analytic contin-

uation, this problem is equivalent to the construction of stationary, spherically symmetric

black hole solutions in N = 2 supergravity coupled to vector multiplets [10], or spheri-

cally symmetric instantons in N = 2 supergravity coupled to hypermultiplets [14]. The

corresponding solutions (as well as their multi-centered generalizations) have been known

explicitly for some time [45 – 48, 15]. We rederive them here to illustrate the power of

the twistor formalism, and illuminate the geometric structure behind these supergravity

solutions. We expect that similar arguments can be used to generate new solutions in a

variety of other contexts where supersymmetry can be reduced to holomorphy.

4.1 Strategy

As will be shown in [17], there is a correspondence between geodesics on a quaternionic-

Kähler manifold M and geodesics on its hyperkähler cone S with zero angular momentum

under the global SU(2). Moreover, BPS geodesic motion on M, characterized by the

condition that the quaternionic vielbein V AA′
pulled back to the geodesic has a right-

eigenvector with eigenvalue zero, is equivalent to holomorphic geodesic motion on S:

pℵ = 0 , (4.1)

where pℵ denotes the canonical momenta conjugate to the holomorphic coordinates zℵ on

S; it will be convenient to choose the holomorphic coordinates (zℵ) = (ξΛ, ξ̃Λ, w[, v
[) on

the hyperkähler cone. In particular, (4.1) implies that the geodesic is null,

pℵgℵℵ̄pℵ̄ = 0 . (4.2)

It is impossible for real non-constant geodesics on S to satisfy (4.1), since pℵ̄ = p∗ℵ. For

the analytic continuations of S relevant to the black hole or instanton problems, however,

the BPS conditions can be satisfied. In this section, we take the metric on S to be the

standard metric on the Swann space of the quaternionic-Kähler c-map metric (2.41), but

treat the holomorphic and anti-holomorphic coordinates zℵ and z̄ℵ̄ independently, i.e. we

work with the complexification of S. We return to the issue of reality conditions at the

end of section 4.2.

The BPS condition (4.1) implies that the anti-holomorphic coordinates (zℵ̄) =

(ξ̄Λ, ¯̃ξΛ, w̄[, v̄
[) are constants of motion. Moreover, the conservation of the Noether charges8

associated with the Heisenberg and U(1) ⊂ SU(2) symmetries (the latter vanishing for

8(PΛ, QΛ, K) will in general differ from the charges (pΛ, qΛ, k) on the base, e.g. due to the rescaling of

the metric on M by r2 = χ.
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geodesics with zero SU(2) momentum),

PΛ = pξ̃Λ
+ p ¯̃

ξΛ
, (4.3a)

QΛ = −pξΛ − pξ̄Λ +
i

2
(ξ̃Λpw[

− ¯̃ξΛpw̄[
) , (4.3b)

K =
i

4
(pw[

− pw̄[
) , (4.3c)

0 =
1

2i
(v[pv[ − v̄[pv̄[) , (4.3d)

implies that the anti-holomorphic momenta pℵ̄ = (pξ̄Λ , p ¯̃ξΛ
, pw̄[

, pv̄[) are also constants of

motion (and, moreover, that pv̄[ = 0). It turns out that these conserved quantities are

sufficient to integrate the motion completely.

Indeed, pℵ̄ being constant, the first order equation

gℵ̄ℵ
dzℵ

dt
= pℵ̄ (4.4)

can be integrated using the Kähler property gℵ̄ℵ = ∂zℵ̄∂zℵχ of the metric, to give

∂ℵ̄χ = pℵ̄t + cℵ̄ (4.5)

where cℵ̄ are constants of integration. Therefore, in terms of the variables ∂ℵ̄χ, the motion

becomes linear. This identifies the angle variables of this integrable system as the variables

conjugate to z̄ℵ̄ under Legendre transform with respect to the hyperkähler potential χ. To

find the most general solution of BPS geodesic motion on S, it only remains to express the

complex variables zℵ in terms of ∂ℵ̄χ and the constants of motion z̄ℵ̄, pℵ̄, cℵ̄. Finally, the

BPS geodesic motion can be projected on the quaternionic-Kähler base using the covariant

c-map formulae of section 3.43, and enforcing the vanishing of the SU(2) momenta.

4.2 Solution

We now exploit the explicit form (3.27) of the hyperkähler potential for the c-map:

χ(φΛ, χΛ, χ̃[) = 2
√

v[v̄[
√

Σ2(φ, χ) − χ̃2
[ , (4.6)

where we recall that

φΛ =
i

2
(ξΛ − ξ̄Λ) , χΛ =

i

2
(ξ̃Λ − ¯̃ξΛ) , (4.7)

χ̃[ = w[ + w̄[ +
i

4
(ξΛ + ξ̄Λ)(ξ̃Λ − ¯̃ξΛ) . (4.8)

Using the identities

(

∂χΛ
χ

−∂φΛχ

)

= Re

(

ηΛ

FΛ(η)

)

=

(

xΛ − x[

2

(

ξΛ + ξ̄Λ
)

yΛ − x[

2

(

ξ̃Λ +
¯̃
ξΛ

)

)

(4.9)

(where the second equality defines yΛ) and

∂χ̃[
χ = x[ , 2iv[∂v[χ = iχ − (yΛ − x[ξ̃Λ) ξΛ ≡ y[ , (4.10)
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where the partial derivatives of χ are taken in the coordinates (φΛ, χΛ, χ̃[), one may rewrite

the anti-holomorphic derivatives ∂z̄ℵ̄χ appearing in (4.5) as

∂ξ̄Λχ =
i

2
(yΛ − x[ ¯̃ξΛ) , −∂ ¯̃

ξΛ
χ =

i

2
xΛ , (4.11)

∂w̄[
χ = x[ , ∂v̄[χ =

χ

2v̄[
. (4.12)

Together with (4.5), these identities imply that the hyperkähler potential χ is a constant

of motion, while xΛ, yΛ, x[ flow linearly:

xΛ = 2i (PΛ t + CΛ) , yΛ = 2i (QΛ t + DΛ) , x[ = 4i (K t + E) . (4.13)

It will be useful to further define

x̂Λ ≡ xΛ − x[ξ̄Λ , ŷΛ ≡ yΛ − x[ ¯̃ξΛ , (4.14)

which, like xΛ and yΛ, depend linearly on the geodesic time,

x̂Λ = χ(pΛ t + cΛ) , ŷΛ = χ(qΛ t + dΛ) , x[ = χ(k t + e) , (4.15)

with shifted and rescaled momenta,

χpΛ = 2iPΛ − 4iKξ̄Λ , χqΛ = 2iQΛ − 4iK
¯̃
ξΛ , χk = 4iK , (4.16)

χcΛ = 2iCΛ − 4iEξ̄Λ , χdΛ = 2iDΛ − 4iE ¯̃ξΛ , χe = 4iE . (4.17)

In order to find the explicit trajectory, we note that (x̂Λ, ŷΛ) satisfy “generalized stabiliza-

tion equations” analogous to (3.17),

1

2

[

CηΛ
+ + C̃ηΛ

−

]

= r[ x̂Λ ,
1

2

[

CFΛ(η+) + C̃F̄Λ(η−)
]

= r[ ŷΛ , (4.18)

where C and C̃ were defined in (3.5). Despite the fact that C and C̃ are in general

not complex conjugate to one another, the standard solution (3.19) to the stabilization

equations continues to hold,

CηΛ = r[

(

x̂Λ + i
∂Σ(x̂, ŷ)

∂ŷΛ

)

, C̃η̄Λ = r[

(

x̂Λ − i
∂Σ(x̂, ŷ)

∂ŷΛ

)

, (4.19a)

CFΛ = r[

(

ŷΛ − i
∂Σ(x̂, ŷ)

∂x̂Λ

)

, C̃F̄Λ = r[

(

ŷΛ + i
∂Σ(x̂, ŷ)

∂x̂Λ

)

. (4.19b)

Injecting these relations into (3.16), we may express φΛ, χΛ in terms of the linear flows

x̂Λ, ŷΛ as
(

φΛ

χΛ

)

=
ix[

CC̃

(

x̂Λ

ŷΛ

)

+
r[

CC̃

(

∂Σ(x̂,ŷ)
∂ŷΛ

−∂Σ(x̂,ŷ)
∂x̂Λ

)

. (4.20)

Since (φΛ, χΛ) are related to the differences ξΛ − ξ̄Λ and ξ̃Λ − ¯̃ξΛ by (4.7), and since the

anti-holomorphic coordinates (ξ̄Λ, ¯̃ξΛ) are constants of motion, (4.20) determines (ξΛ, ξ̃Λ)
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once x[ and r[ are known. The former is given by the linear flow (4.15), while the latter

follows from the general property (3.18) of the attractor equations,

4(r[)2 Σ(x̂, ŷ) = CC̃ K(η+, η̄+) = 16 (r[)2 v[v̄[ Σ(φ, χ) , (4.21)

which, in combination with (3.30), leads to

r[ =
Σ(x̂, ŷ)

χ
. (4.22)

Finally, we may obtain the flows of v[ and χ̃[ from (using (3.24))

v[ =
(r[)2 − (x[)2

4v̄[
, χ̃[ =

χx[

(r[)2 − (x[)2
, (4.23)

and then infer the flow of w[ from (4.8). We have now obtained all of the holomorphic

coordinates zℵ, and hence determined the BPS geodesic trajectory on the hyperkähler cone

S.

In order to project the geodesic flow to the quaternionic-Kähler base we use the covari-

ant c-map formulae of section 3.4. In view of (3.38), the evolution of the scalars (za, z̄ā) is

simply given by the ratios

zΛ =
x̂Λ + i∂Σ(x̂,ŷ)

∂ŷΛ

x̂0 + i∂Σ(x̂,ŷ)
∂ŷ0

. (4.24)

The evolution of the dilatonic variable U follows from (3.34) and (4.22),

e−2U =
4Σ(x̂, ŷ)

χ2
. (4.25)

In the black hole context, the time t is the inverse radial distance in the spatial slices of

the black hole, while the area of the sphere as a function of the radial distance is given

by 4πe−2U/t2. Using (4.15), the Bekenstein-Hawking entropy of the black hole is therefore

given by

SBH(p, q) = limt→∞ πe−2U/t2 = 4π Σ(pΛ, qΛ) (4.26)

reproducing the known relation between black hole entropy and Hesse potential [8, 41].

The motion of ζΛ, ζ̃Λ may be obtained by rewriting (3.45), (3.50) in terms of C, C̃ and

substituting (4.19),

ζΛ = ξ̄Λ − 1

2(r[)2

[

CηΛ
+ − C̃η̄Λ

+

]

= ξ̄Λ − i

r[

∂Σ(x̂, ŷ)

∂ŷΛ
, (4.27a)

ζ̃Λ = ¯̃ξΛ − 1

2(r[)2

[

CFΛ − C̃F̄Λ

]

= ¯̃ξΛ +
i

r[

∂Σ(x̂, ŷ)

∂x̂Λ
. (4.27b)

Finally, the flow of σ follows from the complex conjugate of (3.52),

σ = ᾱ +
i

r[

[

ξ̄Λ ∂Σ(x̂, ŷ)

∂x̂Λ
+ ¯̃ξ

Λ ∂Σ(x̂, ŷ)

∂ŷΛ

]

. (4.28)
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It is also useful to note the solution for the holomorphic coordinates ξΛ, ξ̃Λ, obtained by

similar manipulations:

ξΛ = ζΛ +
1

2r[

[

C

C̃

(

x̂Λ − i
∂Σ(x̂, ŷ)

∂ŷΛ

)

− C̃

C

(

x̂Λ + i
∂Σ(x̂, ŷ)

∂ŷΛ

)

]

, (4.29a)

ξ̃Λ = ζ̃Λ +
1

2r[

[

C

C̃

(

ŷΛ + i
∂Σ(x̂, ŷ)

∂x̂Λ

)

− C̃

C

(

ŷΛ − i
∂Σ(x̂, ŷ)

∂x̂Λ

)

]

. (4.29b)

We recall that geodesic motion on S only projects down to geodesic motion on the base

M when the SU(2) momentum vanishes.9 The U(1) ⊂ SU(2) charge has already been set

to zero in (4.3d), and J+ vanishes for all holomorphic geodesics, but it remains to enforce

J− = x̂Λpξ̄Λ − ŷΛp ¯̃ξΛ
− i

4
ȳ[pw̄[

+ x[pv̄[ = 0 . (4.30)

This determines the NUT charge k as

ik = pΛdΛ − qΛcΛ . (4.31)

Thus, we have obtained the general BPS trajectory on the complexification of the

quaternionic-Kähler metric (2.41).

It remains to enforce the reality conditions appropriate to the problem at hand. For

BPS instantons, there is no such reality condition, although one should in principle ensure

that the Euclidean configuration can be reached by analytic continuation of the path in-

tegral. For BPS black holes, (U, σ) need to be real whereas (ζΛ, ζ̃Λ) need to be imaginary.

This requires the charges (PΛ, QΛ) to be imaginary and K real, while the situation is re-

versed for (pΛ, qΛ, k). Thus, (xΛ, yΛ) need to be real while x[ is imaginary and r[ is real.

Moreover, one should demand that (ξ̄Λ, ¯̃ξΛ) are imaginary and ᾱ is real. One may check

from (4.29), (3.52) that this requires that (ξΛ, ξ̃Λ) are imaginary while α is real.

We conclude that the twistor space for the para-quaternionic-Kähler space M∗ is

obtained by taking (ξΛ, ξ̃Λ, ξ̄Λ,
¯̃
ξΛ) as independent, purely imaginary variables, and (α, ᾱ)

as independent, real variables. We note that then zz̄ becomes a phase, as a consequence

of (3.48), and the S2 fiber of the twistor space becomes a hyperbolic two-plane H2.

We may now compare our solution to the ones appearing in [45 – 49, 15]. Using (3.46),

we may express (ηΛ
+, FΛ(η+)) in terms of the symplectic section (XΛ, FΛ(X)) on the special

Kähler manifold Ms, and obtain

−i z̄ eU+ 1
2
K(X,X̄)

(

XΛ

FΛ

)

+ i z̄−1 eU+ 1
2
K(X,X̄)

(

X̄Λ

F̄Λ

)

=
1

r[

(

x̂Λ

ŷΛ

)

. (4.32)

Further expressing r[ in terms of the dilaton using (3.34), and setting z̄ = 1/(z̄)∗ = e−iα,

we find

Im

[

e
1
2
K(X,X̄)−U−iα

(

XΛ

FΛ

)]

=

(

HΛ

HΛ

)

(4.33)

9More general geodesic motion on S would descend to motion on M in a non-trivial magnetic field.
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with

HΛ = x̂Λ/χ = pΛt + cΛ , HΛ = ŷΛ/χ = qΛt + dΛ . (4.34)

In the black hole problem, t is identified with the inverse radial distance on the R
3 spatial

slices, so (HΛ,HΛ) are indeed harmonic functions, although not of the most general type

allowed in [45 – 48]. In particular, we see that the phase α (equal to the phase of the central

charge Z near the horizon) is identified throughout the flow as the azimuthal angle on the

S2 fiber of Z. It would be very interesting to generalize our discussion to the multi-centered

case, and lift the standard solutions to suitably holomorphic maps from R
3 to S.

5. The quaternionic Penrose transform

The classic Penrose transform relates wave functions on subsets of the twistor space CP
3 —

more precisely, elements in the sheaf cohomology H1(X ⊂ CP
3,O(−2h−2)) — to helicity-h

solutions of conformally invariant wave equations on subsets of R
4 (see e.g. [50 – 52]). This

transform has been generalized in many directions. For example, one may replace R
4 by

another self-dual 4-manifold [53, 54]. Self-dual 4-manifolds can be considered as the n = 1

case of quaternionic-Kähler 4n-manifolds, and there is a further extension of the Penrose

transform to this case [21, 22]. Letting M be a quaternionic-Kähler manifold and Z its

twistor space, this “quaternionic Penrose transform” relates elements in H1(Y ⊂ Z,O(−k))

to solutions of wave equations constructed from the quaternionic structure on subsets of

M.

Here we work out one aspect of this transform explicitly: we represent elements ψf ∈
H1(Y ⊂ Z,O(−k)) by holomorphic sections f on an appropriate open set in Z, and we give

a contour integral formula which transforms any such f into a solution of a wave equation

on M. Furthermore, in the case where M comes from the c-map, we use the results of

section 3.5 to make this transform particularly concrete: it converts holomorphic functions

in 2n + 1 variables, g(ξΛ, ξ̃Λ, α), to solutions of wave equations on M. Finally we use this

formalism to compute the Penrose transform of particular eigenstates of the Heisenberg

group; physically, these are interpreted as the wave function of BPS black holes in radial

quantization [17].

5.1 For general quaternionic-Kähler manifolds

Suppose M is a quaternionic-Kähler manifold. As we reviewed in section 2.1, there is

a natural CP
1-bundle over M, the twistor space Z, equipped with a canonical complex

structure. The Penrose transform is local on M, so we may as well take M to be a small

open set; in particular, we may assume that the decomposition TCM = E ⊗ H exists

globally on M. Then Z is equipped with a canonical holomorphic line bundle O(1). We

choose a standard local trivialization of H, and let (π1, π2) be the corresponding coordinates

on the total space of H×. Then z = π1/π2 is a coordinate on the CP
1 fibers of Z.

To construct the Penrose transform we begin by constructing a class ψf in the sheaf

cohomology H1(Z,O(−k)). The cohomological interpretation of the Penrose transform has

been described in [55, 51]; we construct ψf using the Čech description of the cohomology,
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reviewed e.g. in [56, 51]. The Čech construction depends on a covering of Z by open sets:

we take two sets, U1 = {(x, z) : x ∈ M, z 6= 0} and U2 = {(x, z) : x ∈ M, z 6= ∞}. Then

ψf is represented simply by a holomorphic section f of O(−k) on U1 ∩ U2. Equivalently,

we may regard f as a function f(x, π1, π2), homogeneous of degree −k in the πA′
, defined

where π1 6= 0, π2 6= 0, and holomorphic. Here “holomorphic” is defined using the complex

structure on the total space of O(−1) → Z, described in section 2: concretely, it implies

that all the vector fields

dA ≡ πA′

∂AA′ − πB′

πC′

(pAB′)D
′

C′

∂

∂πD′ (5.1)

annihilate f . (To check this, one shows that each dA has zero inner product with the basis of

(1, 0)-forms on S described in section 2, so it is a (0, 1) vector field, i.e. an antiholomorphic

derivative.)

We now construct the Penrose transform ϕ of ψf as an appropriate contour integral

of f . For k > 2, we will show by simple manipulations that the holomorphy of f implies

ϕ obeys first-order differential equations on M. We then turn to the k = 2 case, which

leads to second-order differential equations and is technically more difficult. The Penrose

transform for k < 2 will involve in general differentiation as well as integration, but should

be treatable along the same lines as in the classic case; we do not consider it here.

For O(−k), k > 2: for notational simplicity we treat mainly the case k = 3. So given f

representing ψf ∈ H1(Z,O(−3)), we construct a field on M by

ϕA′
(x) =

∮

(

πB′dπB′
)

πA′
f(x, π) (5.2)

Since f has homogeneity −3 and there are 3 explicit factors of π, the whole integrand has

homogeneity 0, so it is well defined on Z. The contour of integration is chosen to lie in the

CP
1 fiber of Z over x, and to separate z = 0 and z = ∞.

In the rest of this section, we will prove that ϕA′
(x) obeys a Dirac-type equation,

∇AA′ϕA′

(x) = 0 . (5.3)

The strategy is simple: because f is holomorphic on Z we have dAf = 0. We insert this

into the contour integral (5.2) to get

0 =

∮

(

πB′dπB′
)

(

πA′

∂AA′ − πE′

πA′

(pAE′)G
′

A′

∂

∂πG′

)

f(x, π) . (5.4)

Now integrate the operator ∂
∂πG′ by parts, using the identity (easily checked in local coor-

dinates)
∮

(

πB′dπB′
) ∂

∂πG′ g(π) = 0 . (5.5)

Applied to (5.4) this integration by parts gives two terms, since ∂
∂πG′ can hit either πE′

or

πA′
. If it hits A′ we get (pAE′)A

′

A′ which vanishes; so we only get the E′ term, giving

0 =

∮

(

πB′dπB′
)

πA′
(

∂AA′ + (pAE′)E
′

A′

)

f(x, π) . (5.6)
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The right side is ∇AA′ϕA′
, so we get the desired (5.3).

More generally, the twistor transform for O(−k) with k > 2 gives totally symmetric

(k − 2)-tensors on M; it is obtained by replacing (5.2) with

ϕ(A′
1A′

2···A
′
k−2

)(x) =

∮

(

πB′dπB′
)

πA′
1πA′

2 · · · πA′
k−2f(x, π) , (5.7)

and the same differentiation under the integral sign we did above shows

∇AA′
1
ϕ(A′

1A′
2···A

′
k−2

)(x) = 0 (5.8)

For O(−2): now we turn to the harder case k = 2. Given f representing ψf ∈
H1(Z,O(−2)), we construct a scalar function on M by a contour integral similar to (5.2),

ϕ(x) =
∮

(

πB′dπB′
)

f(x, π) (5.9)

In the rest of this section we prove that ϕ(x) obeys a family of second-order differential

equations,
(

∇AA′∇A′

B − νεAB

)

ϕ(x) = 0 , (5.10)

where we recall that ν = 1
4n(n+2)R. Quaternionic geometry in case n = 1 reduces to

conformal geometry, and correspondingly (5.10) reduces to the conformal Laplacian ∆− 1
6R

in that case. For n > 1, (5.10) gives more than one equation, transforming in ∧2(E); tracing

them with εAB gives ∆− 1
2(n+2)R, which differs from the conformal Laplacian ∆− 4n−2

4(4n−1)R.

To establish (5.10) we begin by defining a second differential operator d′B on S, acting

on sections fA(x, π) by

d′BfA =

(

πA′

∂BA′ − πB′

πC′

(pBB′)D
′

C′

∂

∂πD′

)

fA + πA′

(qBA′)DAfD . (5.11)

This operator is engineered to obey

d′AdB − d′BdA = 0 . (5.12)

To prove this, we choose a local frame such that p = 0 at x: then (5.12) is

πA′

πB′

πC′
(

∂AA′(pBB′)D
′

C′ − ∂BA′(pAB′)D
′

C′

) ∂

∂πD′ = 0 . (5.13)

On the other hand, in these coordinates the formula (2.6) for the USp(2) curvature becomes

∂AA′(pBB′)D
′

C′ − ∂BB′(pAA′)D
′

C′ =
ν

2
εAB(δD′

A′ εC′B′ + δD′

B′ εC′A′) . (5.14)

This vanishes when symmetrized over (A′B′C ′), establishing (5.13).

As we will now see, the complex

O(−2)
dA→ OA(−1)

d′
B→ OAB(0) (5.15)
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on Z leads to a differential equation on M, which will turn out to be (5.10). Abstractly this

equation arises as one of the differentials in a spectral sequence computing H∗(Z,O(−2)),

as sketched in [22], along the lines of similar arguments described in [55, 57]; but in this

case the construction is simple enough that it can be worked out by hand. We begin by

considering the function

h(x, π) ≡ ϕ(x)

π1π2
− f(x, π) (5.16)

on S. By construction, contour-integrating h gives

∮

(

πB′dπB′
)

h(x, π) = 0 . (5.17)

But since H1(CP
1,O(−2)) is one-dimensional, this vanishing implies that h(x, π) is trivial

in H1(CP
1,O(−2)); in other words, there is a decomposition h = h(1) + h(2) where h(i) is

defined on Ui. Applying dA to this,

dAh = dAh(1) + dAh(2) . (5.18)

Moreover, this is the unique decomposition of dAh into a piece defined on U1 and a piece

defined on U2: the uniqueness follows from the fact that the ambiguity would be a global

section of O(−1) over CP
1, and there are no such sections. We now compute this de-

composition in another way: using dAf = 0 we see that dAh = dA

( ϕ
π1π2

)

, and using the

definition (5.1) of dA this gives

dAh =
1

π1

[

∂A2 + (pA1)
1
2 +

π2

π1
(pA2)

1
2

]

ϕ +
1

π2

[

∂A1 + (pA2)
2
1 +

π1

π2
(pA1)

2
1

]

ϕ . (5.19)

The first (resp. second) term is defined on U1 (resp. U2), so by the uniqueness of the

decomposition,

dAh(1) =
1

π1

[

∂A2 + (pA1)
1
2 +

π2

π1
(pA2)

1
2

]

ϕ . (5.20)

Then using (5.12),

(d′AdB − d′BdA)h(1) = 0 , (5.21)

gives a second-order differential equation for ϕ. To work out this equation it is again

convenient to work in normal coordinates on M, with p = q = 0 at x. Then substituting

the definition (5.11) of d′B and (5.20) in (5.21), the terms proportional to π2/π1 vanish

using (5.14), leaving

(

∂A1∂B2 − ∂B1∂A2 + ∂A1(pB1)
1
2 − ∂B1(pA1)

1
2

)

ϕ(x) = 0 . (5.22)

This is not written in a manifestly USp(2)-covariant way, which can be traced back to the

fact that our covering of Z by {U1, U2} is not covariant. Using (5.14), it is easily rewritten

in the desired form,
(

∇AA′∇A′

B − ν εAB

)

ϕ(x) = 0 (5.23)
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5.2 For c-map spaces

This general construction can be made more explicit when the quaternionic-Kähler space

M arises from the c-map: as we will see, in this case the Penrose transform allows us to

construct solutions of wave equations on M starting from arbitrary holomorphic functions

in 2n + 1 variables g(ξΛ, ξ̃Λ, α).

So suppose M comes from the c-map. Then we have local complex coordinates (ξ, ξ̃, α)

which cover an open set in Z. To be precise, using (3.55), we see that this coordinate system

covers all of each twistor sphere except the north and south poles. We also have a natural

trivialization of O(−k), provided by the C
× gauge condition v[ = 1, which enables us to

pass between homogeneous functions on S and ordinary functions of (ξΛ, ξ̃Λ, α). So in

this gauge a class in H1(Z,O(−k)) can be simply represented by a holomorphic function

g(ξΛ, ξ̃Λ, α), while the integration measure in (5.9) is obtained by using (3.56) in the v[ = 1

gauge. Thus, the Penrose transform for scalar fields (5.9) becomes

ϕ(U, za, z̄ā, ζΛ, ζ̃Λ, σ) = 4 e2U

∮

dz

z
g(ξΛ, ξ̃Λ, α) , (5.24)

where ξΛ, ξ̃Λ, α are given in terms of (U,X, ζΛ, ζ̃Λ, σ) by (3.55). Similarly (5.7) becomes

ϕ(A′
1A′

2···A
′
k−2

)(U, za, z̄ā, ζΛ, ζ̃Λ, σ) = 2k ekU
∮

dz
z z

1
2
δg(ξΛ, ξ̃Λ, α) (5.25)

where δ ≡ ((the number of i with A′
i = 1) − (the number of i with A′

i = 2)).

When k is odd, (5.25) involves square roots of z. This is related to the fact that S
provides a global definition of O(k) and Sk(H) only for k even. It is not obvious whether

one can make sense of (5.25) for k odd (perhaps by choosing g with some appropriate

branch cuts).

5.3 The inner product

Since we view ψ ∈ H1(Z,O(−k)) as a wave function, it is natural to ask whether there is

a canonical inner product 〈ψ|ψ′〉 defined in terms of the geometry of Z. For the classical

case where Z is a subset of CP
3, the answer to this question can be phrased in terms of

an isomorphism H1(Z,O(−k)) ' H1(Z,O(k − 4)) known as the “twistor transform” [58].

Upon representing the classes in H1 by holomorphic functions, the corresponding inner

product admits a concrete integral representation, given e.g. in section 3.3 of [59]. While

we do not know the generalization of the twistor transform to the c-map case, we can

construct a candidate for an inner product,

〈ψf |ψf ′〉 =

∫

Z′

volZ 〈f |f ′〉 (5.26)

Here, 〈f |f ′〉 is the Hermitian inner product in O(−k) and volZ the volume form induced

from the Kähler -Einstein metric on Z. This formula is not well defined a priori ; it only

makes sense under an assumption about the global structure of Z, namely, every ψ is

obtained as ψf , with f a unique holomorphic section of O(−k) over Z ′ = {z 6= 0, z 6=
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∞} ⊂ Z. There is some evidence that this assumption does hold when M is a symmetric

space [26].

Choosing the v[ = 1 gauge to trivialize O(−k), f and f ′ become g(ξΛ, ξ̃Λ, α) and

g′(ξΛ, ξ̃Λ, α) as above, so

〈f |f ′〉 = ḡ g′ ekKZ (5.27)

where KZ is given in (3.32). We determine the volume form by considering the line bundle

K of holomorphic top-forms on Z. K admits a natural Hermitian metric, in which the

squared norm of any ω is ω∧ω̄
volZ

. On the other hand K ' O(−2n− 2), and the metric is the

(2n+2)-th power of the metric in O(−1) [18]. Recall from section 2 that the squared norm of

the Heisenberg invariant section v[ = 1 is by definition eKZ ; hence the Heisenberg invariant

section dξΛdξ̃Λdα has squared norm e(2n+2)KZ , up to an overall constant. Comparing these

two gives

volZ = e−(2n+2)KZ dξΛdξ̃Λdαdξ̄Λd¯̃ξΛdᾱ . (5.28)

So altogether we find the inner product of wave functions as

〈ψf |ψf ′〉 =
∫

Z′ dξΛdξ̃Λdαdξ̄Λd
¯̃
ξΛdᾱ e(k−2n−2)KZ g(ξΛ, ξ̃Λ, α) g′(ξΛ, ξ̃Λ, α) (5.29)

Z ′ does not cover the full range of the complex coordinates (ξΛ, ξ̃Λ, α): the integration

should run over a domain such that the bracket in (3.32) is strictly positive.

5.4 The BPS black hole wave function

As an example of this technology, we compute the Penrose transform of a class in

H1(Z,O(−k)) (k ≥ 2) which is an eigenvector for the Heisenberg group acting on Z,

with vanishing central character. As will be explained in [17], such a class describes the

wave function of a BPS black hole with fixed real electric and magnetic charges (qΛ, pΛ)

and vanishing NUT charge, in a mini-superspace radial quantization scheme.

Given the action (3.33) of the complexified Heisenberg algebra on the twistor space Z,

an eigenvector is determined up to normalization by its eigenvalues ipΛ, iqΛ under PΛ and

QΛ,

g(ξΛ, ξ̃Λ, α) = ei(pΛξ̃Λ−qΛξΛ) . (5.30)

We expect that this wave function is delta-function normalizable with respect to the inner

product (5.29) (perhaps after regulating by appropriately continuing k.) In physical appli-

cations, one would expect to consider a quotient of Z by a lattice in the Heisenberg group,

which would select integer momenta pI , qI ; the wave function (5.30) then should become

normalizable, as the flat directions ξΛ − ξ̄Λ, ξ̃Λ − ¯̃ξΛ, α − ᾱ become compact.

We now compute the Penrose transform of (5.30), starting with the case k = 2. Equa-

tion (5.24) gives

ϕ(U, za, z̄ā, ζΛ, ζ̃Λ, σ) = 4e2U+ipΛζ̃Λ−iqΛζΛ

∮

dz

z
exp

(

−eU (zZ̄ + z−1Z)
)

, (5.31)

where

Z = e
1
2
K(X,X̄)(pΛFΛ(X) − qΛXΛ) (5.32)
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is the “central charge”, familiar from N = 2 supergravity. Using
∮

dz
z eaz+bz−1

=

2πI0(2
√

ab) (the modified Bessel function),

ϕ(U, za, z̄ā, ζΛ, ζ̃Λ, σ) = 8π e2U+ipΛζ̃Λ−iqΛζΛ

I0(2e
U |Z|) (5.33)

More generally for k ≥ 2, (5.24) or (5.25) give

ϕ(A′
1A′

2···A
′
k−2

)(U, za, z̄ā, ζΛ, ζ̃Λ, σ) = 2k ekU+ipΛζ̃Λ−iqΛζΛ

∮

dz

z
z

1
2
δ exp

(

−eU (zZ̄ + z−1Z)
)

,

(5.34)

and using
∮

dz
z zmeaz+bz−1

= 2π
(

a
b

)
m

2 I−m(2
√

ab) ,

ϕ(A′
1A′

2···A
′
k−2

)(U, za, z̄ā, ζΛ, ζ̃Λ, σ) = 2k+1π ekU+ipΛζ̃Λ−iqΛζΛ
(

Z̄
Z

)
δ

4
I
− δ

2

(2eU |Z|) (5.35)

at least when k (and hence δ) is even. Irrespective of the value of k, we see that in the

“weak coupling” or “near horizon” limit U → −∞, the wave function ϕ as a function on the

special Kähler manifold has minima at the minima of |Z|, and grows exponentially away

from these points. In the application to black hole physics, however, the required analytic

continuation of the charges turns the modified Bessel function I into a J Bessel function,

with phase stationary at the stationary points of the central charge |Z|, and modulus

power-suppressed away from these points. This is consistent with the classical attractor

behavior [37 – 39], although the absence of exponential decay is perhaps unexpected. We

shall return to the physical interpretation of this wave function in the black hole context

in [17], and in the instanton context in [60].
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A. Details on the superconformal quotient

In this appendix, we give some more details and useful formulas to prove the results dis-

cussed in section 3.4. The superconformal quotient can be performed either on the tensor

multiplet side or on the hypermultiplet side: we choose the former. In the notation of [43]

(but with K → −K) the relevant bosonic terms of the tensor multiplet Lagrangian coupled

to Poincaré supergravity after the c-map read

e−1L = − 1

2
(∂µφ)2 − 2Gab̄∂µza∂µz̄b̄ +

1

2
e−φ(N + N̄ )ΛΣ∂µAΛ∂µAΣ

+ 2TIJ EI
µEJµ + i(N − N̄ )ΛΣ

[

(∂µAΛ)EΣµ − 2(∂µAΛ)AΣE0µ
]

.
(A.1)
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Here Eµ = i
2e−1εµνρσ∂νEρσ is the field strength of the antisymmetric tensor field Eµν . The

index I runs over one more value than Λ, so I = {[,Λ}. The matrix TIJ appearing in the

tensor field kinetic term is given by

TIJ = eφ

[

eφ − (N + N̄ )ΛΣAΛAΣ 1
2(N + N̄ )ΛΣAΛ

1
2(N + N̄ )ΛΣAΣ −1

4(N + N̄ )ΛΣ

]

, (A.2)

where N is defined as in (2.42). The relation between these variables and those of the main

text is given in footnote 3 on page 13.

Our task is to prove that the Lagrangian (A.1) follows from the superspace Lagrangian

density L given in (3.9). The component Lagrangian for the rigid superconformal super-

symmetric tensor fields follows from [33, 20]. The relevant terms of the bosonic Lagrangian

read

L = LxIxJ

(

− 1

4
∂µxI∂µxJ − ∂µvI∂µv̄J + EI

µEµJ
)

−iEI
µ

(

LvIxJ ∂µvJ − Lv̄IxJ ∂µv̄J
)

. (A.3)

The Lagrangian (A.3) has conformal symmetry. The scaling weight of the scalars is 2 and

the matrix of second derivatives of L has scaling weight minus two. The function L itself

has therefore scaling weight plus two. From now on, we denote LIJ ≡ LxIxJ . To obtain

the Poincaré theory for the tensor multiplets, one first couples to the Weyl multiplet and

integrates out the SU(2) gauge fields. This procedure is called the superconformal quotient

and was carried out in [61, 43]. We will here apply it to the case of the c-map. It suffices to

consider only the terms quadratic in the tensor fields, the rest is fixed by supersymmetry.

Following [61, 43], the zero weight matrix that multiplies the two tensors in the Poincaré

theory is

e−1LTT = HIJEI
µEµJ , (A.4)

with

HIJ = χT

(

LIJ +
1

4
LIK(~r K · M−1~r L)LLJ

)

, (A.5)

where the tensor potential is defined as

χT(v, v̄, x) ≡ −L + xILI , (A.6)

and the matrix M appearing in the inner product is defined as

M rs =
1

4

[

LIJ(~r I · ~r J)δrs − rIrLIJrJs
]

, (A.7)

with the indices r, s running over three values, and ~r as in (2.34).

Notice that the tensor potential χT is related to the hyperkähler potential χ as defined

in (2.30). In fact, after eliminating the scalars xI in terms of wI + w̄I by the Legendre

transform, they become the same function, up to a sign,

χT

(

v, v̄, x(w + w̄, v, v̄)
)

= −χ(v, v̄, w + w̄) . (A.8)
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Using the results of the main text (3.31), we have

χT(v, v̄, x) = − v[v̄[

(r[)3
K(η+, η−) . (A.9)

To make further progress, we list some of the second derivatives of L. To facilitate the

notation we introduce the scale and SU(2) invariant variables

AΛ =
1

2(r[)2

(

x[xΛ + 2(v[v̄Λ + v̄[vΛ)
)

. (A.10)

Notice that, in relation to the main text, we have that 2AΛ = ζΛ, as stated before. With

this, and using homogeneity of the prepotential F , we compute the second derivatives

LΛΣ = − i

2r[

(

FΛΣ − F̄ΛΣ

)

, L[Λ = −2AΣLΛΣ , (A.11)

and

L[[ = − χT

(r[)2
+ 4AΛAΣLΛΣ . (A.12)

These entries are needed to compute the matrix elements of the matrix M . In fact, we need

to determine the inverse of M in (A.5). For that, we first need to find the determinant of

M , whose general form was given in [61]

det[M ] =
1

3 · 43

[

(LIJ~rI · ~rJ)3 − Tr(PQ)
]

, (A.13)

where the matrices P and Q are defined as

PIJ ≡ LIK(~rK · ~rL)LLJ , QIJ ≡ (~rI · ~rK)LKL(~rL · ~rJ) . (A.14)

Defining the quantity

Y Λ ≡ v[

(r[)3/2
ηΛ
+ , (A.15)

we can compute

PΛΣ =
1

2r[

[

(NY )Λ(NȲ )Σ + (NY )Σ(NȲ )Λ

]

,

P[Λ = − 1

r[

[

(NY )Λ(NȲ )Σ + (NY )Σ(NȲ )Λ

]

AΣ ,

P[[ =
χ2

T

(r[)2
+

4

r[
(NY )Λ(NȲ )ΣAΛAΣ , (A.16)

where we used the notation (NY )Λ = NΛΣY Σ. Similarly we find for the matrix elements

of Q

QΛΣ = −4(r[)2χTAΛAΣ

−2r[[(Y NȲ )(Y ΛȲ Σ + Y ΣȲ Λ) + Y ΛY Σ(Ȳ NȲ ) + Ȳ ΛȲ Σ(Y NY )] ,

Q[Λ = −2χT(r[)2AΛ ,

Q[[ = −χT(r[)2 . (A.17)
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For the first line we used the identity

(~rΛ · ~rΣ) = 2r[(Y ΛȲ Σ + Y ΣȲ Λ) + 4(r[)2AΛAΣ , (A.18)

which can be proven from the relation

ηΛ
+ηΣ

− + ηΛ
−ηΣ

+ =
1

2v[v̄[

(

~r[ × ~rΛ
)

·
(

~r[ × ~rΣ
)

. (A.19)

Straightforward computation yields

Tr(PQ) = −K3 − 6|Y NY |2K , (A.20)

from which one can find the formula for the determinant (A.21),

det[M ] =
1

32
(Y NY )(Ȳ NȲ )(Y NȲ ) . (A.21)

The inverse matrix M−1 was also given in [61]. In our notation, and using (A.14), it

can be rewritten as

(M−1)rs =
32

det[M ]

[

(

χ2 − PIJ(~rI · ~rJ)
)

δrs + 2(~rI)rPIJ(~rJ)s

]

= − 2

|Y NY |2K(Y, Ȳ )

[

(

K2 + |Y NY |2
)

δrs − (~rI)rPIJ(~rJ)s

]

. (A.22)

Finally we compute

HIJ = χTLIJ +
1

2|Y NY |2
(

(K2 + |Y NY |2)PIJ − (PQ)I
KLKJ

)

, (A.23)

and define the dilaton as

eφ =
K(Y, Ȳ )

4r[
= − 1

8(r[)3
LΛΣ(~r[ × ~rΛ) · (~r[ × ~rΣ) , (A.24)

with the same normalization as in [23]. Notice that this coincides with the dilaton given

in (3.34) when we identify φ = 2U . We then find for the components

H[[ = −8eφ
(

eφ − (N + N̄ )ΛΣAΛAΣ
)

,

H[Λ = −4eφAΣ(N + N̄ )ΣΛ ,

HΛΣ = 2eφ(N + N̄ )ΛΣ . (A.25)

This matches precisely with the matrix TIJ in (A.2) up to an overall normalization factor

which is exactly the same as in [23]. One can repeat this analysis for the other terms in the

Lagrangian, but these are fixed by supersymmetry, and moreover in [23] they were shown

to be correctly reproduced in the SU(2) gauge v[ = 0.

This concludes the proof that the superspace Lagrangian (2.27) describes the c-map

Lagrangian (A.1), and validates the “covariant c-map” formulae in section 3.
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[32] A. Karlhede, U. Lindström and M. Roček, Selfinteracting tensor multiplets in N = 2

superspace, Phys. Lett. B 147 (1984) 297.

[33] N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, Hyperkahler metrics and
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